

General Description

The MAX4715/MAX4716 are low on-resistance, lowvoltage, single-pole/single-throw (SPST) analog switches that operate from a +1.6V to +3.6V single supply. The MAX4715 is normally open (NO), and the MAX4716 is normally closed (NC). These devices also have fast switching speeds (ton = 18ns max, toff = 12ns max).

When powered from a +3V supply, the MAX4715/ MAX4716 offer 0.4Ω max on-resistance (RON) with 0.1Ω max Ron flatness. Their digital logic inputs are +1.8V CMOS compatible when using a single +3V supply.

The MAX4715 is pin compatible with the MAX4594, and the MAX4716 is pin compatible with the MAX4595. The MAX4715/MAX4716 are available in SC70-5 packages.

Applications

Power Routing

Battery-Operated Equipment

Audio and Video Signal Routing

Low-Voltage Data-Acquisition Systems

Communications Circuits

PCMCIA Cards

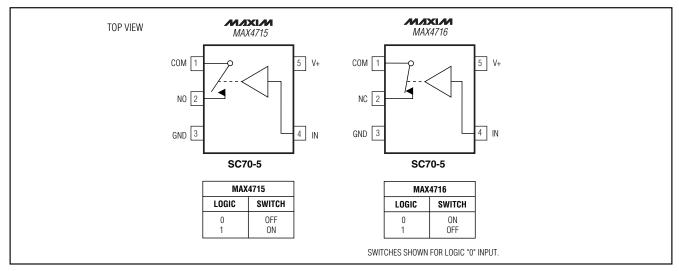
Cellular Phones

Modems

Hard Drives

Features

♦ Low Ron


 0.4Ω max (+3V Supply) 1.2 Ω max (+1.8V Supply)

- ♦ 0.1Ω max Ron Flatness (+3V Supply)
- ♦ +1.6V to +3.6V Single-Supply Operation
- ♦ Available in 5-Pin SC70 Packages
- ♦ Fast Switching: toN = 18ns max, toFF = 12ns max
- ♦ +1.8V CMOS Logic Compatible (+3V Supply)
- ♦ Pin Compatible with MAX4594 (MAX4715) Pin Compatible with MAX4595 (MAX4716)

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX4715EXK-T	-40°C to +85°C	5 SC70-5	ACJ
MAX4716EXK-T	-40°C to +85°C	5 SC70-5	ACK

Pin Configurations/Functional Diagrams/Truth Tables

MIXIM

Maxim Integrated Products 1

For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND	
V+, IN	0.3V to +4V
COM, NO, NC (Note 1)	0.3V to $(V+ + 0.3V)$
Continuous Current NO, NC to COM	±300mA
Peak Switch Current NO, NC to COM	
(pulsed at 1ms, 10% duty cycle max)	±600mA
Continuous Power Dissipation (T _A = +70°C	C)
5-Pin SC70 (derate 3.1mW/°C above +7	'0°C)247mW

Operating	ı Temperature Range	
MAX47	1_EXK	40°C to +85°C
Junction 7	Temperature	+150°C
Storage T	emperature Range	65°C to +150°C
Lead Ten	perature (soldering,	10s) +300°C

Note 1: Signals on NO, NC, or COM exceeding V+ or GND are clamped by internal diodes.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V+ = +2.7V \text{ to } +3.6V, V_{IH} = +1.4V, V_{IL} = +0.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V+ = +3.0V \text{ and } T_A = +25^{\circ}C.)$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS	
ANALOG SWITCH	ANALOG SWITCH							
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}			0		V+	V	
On-Resistance (Note 6)	Post	V+ = 2.7V, I _{COM} = 100mA,	+25°C		0.3	0.4	Ω	
On-nesistance (Note 6)	Ron	V_{NO} or $V_{NC} = 1.5V$	T _{MIN} to T _{MAX}			0.45	22	
On-Resistance Flatness (Note 4)	DEL ATIONS	$V+ = 2.7V, I_{COM} = 100mA,$	+25°C		0.05	0.09	Ω	
On-Resistance Flatness (Note 4)	RFLAT(ON)	V_{NO} or $V_{NC} = 0.6$, 1.5V, 2.1V	T _{MIN} to T _{MAX}			0.1	22	
NO, NC Off-Leakage Current	I _{NO(OFF)} or	$V + = 3.3V, V_{COM} = 0.3V, 3V$	+25°C	-1	0.01	1	nA	
NO, NO OII-Leakage Current	I _{NC(OFF)} or	V_{NO} or $V_{NC} = 3V$, 0.3V	T _{MIN} to T _{MAX}	-10		10	IIA	
COM Off-Leakage Current	loor worm	$V + = 3.3V, V_{COM} = 0.3V, 3V$	+25°C	-1	0.01	1	nA	
CON On-Leakage Current	ICOM(OFF)	V_{NO} or $V_{NC} = 3V$, 0.3V	T _{MIN} to T _{MAX}	-10		10	IIA	
COM On Lookaga Current	le et ween	$V+=3.3V, V_{COM}=0.3V, 3V, V_{NO} \text{ or}$	+25°C	-2		2	nA	
COM On-Leakage Current	ICOM(ON)	V _{NC} = 0.3V, 3V or floating	T _{MIN} to T _{MAX}	-10		10	TIA.	
DYNAMIC								
Turn-On Time	t_{ON} V_{NO} or V_{NC} = 1.5V, R_L = 50 Ω , C_L = 35pF, Figure 1	V_{NO} or $V_{NC} = 1.5V$, $R_L = 50\Omega$,	+25°C		12	18	ns	
Tan on time		T _{MIN} to T _{MAX}			20	113		
Turn-Off Time	torr	toff	V_{NO} or $V_{NC} = 1.5V$, $R_L = 50\Omega$,	+25°C		6	12	ns
Tain on Time	UFF	C _L = 35pF, Figure 1	T _{MIN} to T _{MAX}			15	110	
Charge Injection	Q	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1.0$ nF, Figure 2	+25°C		20		рС	
Off-Isolation (Note 5)	V _{ISO}	$f = 1MHz$, $V_{COM} = 1V_{RMS}$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 3	+25°C		-54		dB	
Total Harmonic Distortion	THD	f = 20Hz to 20kHz, V _{COM} = 2V _{P-P} , R _L = 32 Ω	+25°C		0.01		%	
NC or NO Off-Capacitance	CNO(OFF) CNC(OFF)	f = 1MHz, Figure 4	+25°C		55		pF	
COM Off-Capacitance	C _{COM} (OFF)	f = 1MHz, Figure 4	+25°C		55		рF	
COM On-Capacitance	CCOM(ON)	f = 1MHz, Figure 4	+25°C		80		рF	

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

 $(V+=+2.7V \text{ to } +3.6V, V_{IH}=+1.4V, V_{IL}=+0.5V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V+=+3.0V \text{ and } T_A=+25^{\circ}C.)$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
LOGIC INPUT							
Input Voltage Low	VIL					0.5	V
Input Voltage High	VIH			1.4			V
Input Leakage Current	I _{IN}	$V_{IN} = 0$ or $V+$		-1		1	μΑ
SUPPLY							
Power-Supply Range	V+			1.6		3.6	V
Dogitiva Cupply Current	1.	V 2 6 V. V	+25°C		0.04	0.2	
Positive Supply Current	Positive Supply Current I+	$V+ = +3.6V$, $V_{IN} = 0$ or $V+$	T _{MIN} to T _{MAX}			2	μΑ

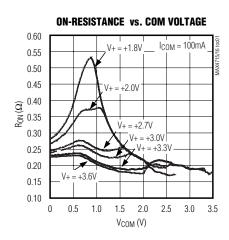
ELECTRICAL CHARACTERISTICS—Single +1.8V Supply

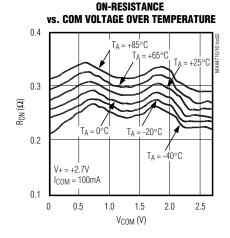
 $(V+ = +1.8V, V_{IH} = +1V, V_{IL} = +0.4V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Notes 2, 3)

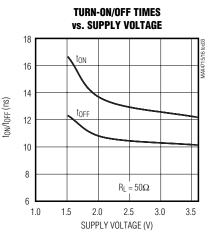
PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH	•						
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}			0		V+	V
On Registance	Day	I _{COM} = 10mA,	+25°C		0.6	1.2	0
On-Resistance	Ron	V_{NO} or $V_{NC} = 0.9V$	T _{MIN} to T _{MAX}			2.5	Ω
NO or NO Off Looks to Comment	I _{NO(OFF)} or	V _{COM} = 0.3V, 1.5V, V _{NO} or	+25°C	-1		1	
NO or NC Off-Leakage Current	INC(OFF)		T _{MIN} to T _{MAX}	-10		10	nA
COM Off Looks are Comment	1	V _{COM} = 0.3V, 1.5V, V _{NO} or	+25°C	-1		1	nA
COM Off-Leakage Current	ICOM(OFF) VNC =	V _{NC} = 1.5V, 0.3V	T _{MIN} to T _{MAX}	-10		10	
COM On London Comment		V _{COM} = 1.5V, 0.3V, V _{NO} or V _{NC} = 1.5V, 0.3V, or floating	+25°C	-2		2	nA
COM On-Leakage Current			T _{MIN} to T _{MAX}	-10		10	
DYNAMIC							
Turn-On Time		V_{NO} or $V_{NC} = 1.5V$, $R_L = 50\Omega$,	+25°C		18	25	ns
rum-on nine	ton	$C_L = 35pF$, Figure 1	T _{MIN} to T _{MAX}			30	115
Turn-Off Time		V_{NO} or $V_{NC} = 1.5V$, $R_L = 50\Omega$,	+25°C		9	20	20
	toff	$C_L = 35pF$, Figure 1	T _{MIN} to T _{MAX}			25	ns
Charge Injection	Q	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1$ nF, Figure 2	+25°C		40		рС

NIXIN

ELECTRICAL CHARACTERISTICS—Single +1.8V Supply (continued)

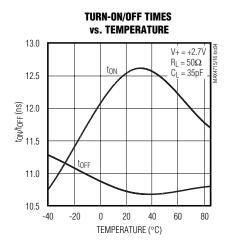

(V+ = +1.8V, V_{IH} = +1V, V_{IL} = +0.4V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Notes 2, 3)

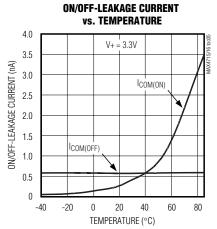

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
LOGIC INPUT							
Input Voltage Low	VIL					0.4	V
Input Voltage High	VIH			1			V
Input Leakage Current	I _{IN}	$V_{IN} = 0$ or $V+$				1	μΑ
SUPPLY							
Dogitive Supply Current	1.	V _{IN} = 0 or V+	+25°C		0.04	0.2	
Positive Supply Current	l+	V	T _{MIN} to T _{MAX}		•	2	μΑ

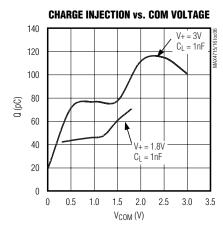

- **Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
- Note 3: SC70-packaged parts are 100% tested at +25°C. Limits across the full temperature range are guaranteed by design and correlation.
- **Note 4:** Flatness is defined as the difference between the maximum and minimum values of on-resistance as measured over the specified analog signal range.
- Note 5: Off-Isolation = $20log_{10} [V_{COM} / (V_{NC} \text{ or } V_{NO})], V_{COM} = \text{output}, V_{NC} \text{ or } V_{NO} = \text{input to off switch}.$
- Note 6: Guaranteed by design.

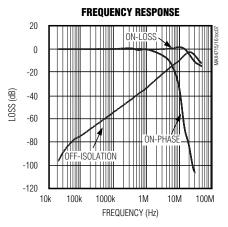
_Typical Operating Characteristics

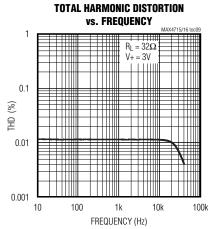
 $(T_A = +25$ °C, unless otherwise noted.)

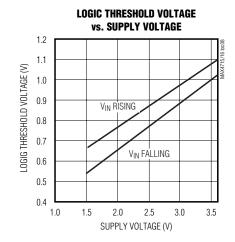







Typical Operating Characteristics (continued)


 $(T_A = +25$ °C, unless otherwise noted.)



Pin Description

P	IN	NAME	FUNCTION	
MAX4715	MAX4716	INAIVIL	FUNCTION	
1	1	COM	Analog Switch—Common	
2	_	NO	NO Analog Switch—Normally Open	
_	2	NC	Analog Switch—Normally Closed	
3	3	GND	Ground	
4	4	IN	IN Digital Control Input	
5	5	V+	Positive Supply Input	

Detailed Description

The MAX4715/MAX4716 are low on-resistance (R_{ON}), low-voltage, single-pole/single-throw (SPST) analog switches that operate from a +1.6V to +3.6V single supply. The MAX4715 is normally open (NO), and the MAX4716 is normally closed (NC).

When powered from a +3V supply, their 0.4Ω RoN allows high continuous currents to be switched in a variety of applications.

Applications Information

Logic Inputs

The MAX4715/MAX4716 logic inputs can be driven up to +3.6V regardless of the supply voltage. For example,

with a +3.3V supply, IN may be driven low to GND and high to +3.6V. Driving IN Rail-to-Rail[®] minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) can be passed with very little change in on-resistance (see *Typical Operating Characteristics*). The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.

Test Circuits/Timing Diagrams

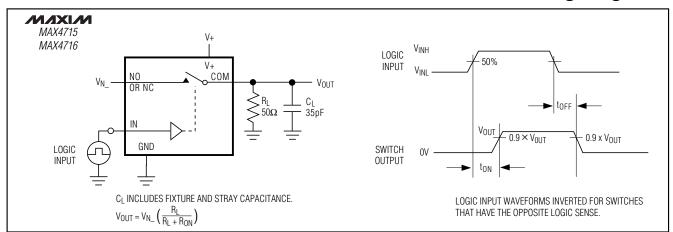


Figure 1. Switching Time

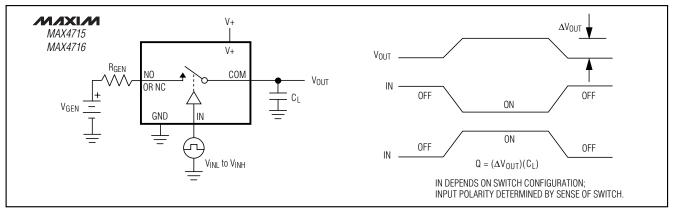


Figure 2. Charge Injection

Test Circuits/Timing Diagrams (continued)

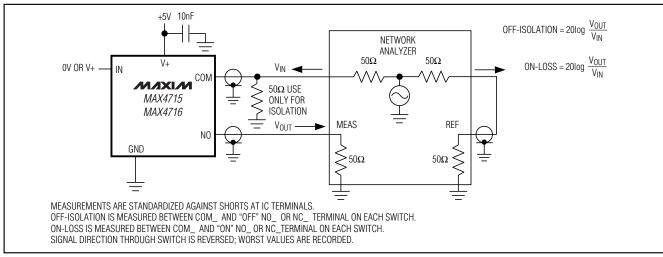


Figure 3. On-Loss and Off-Isolation

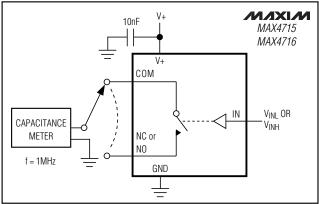
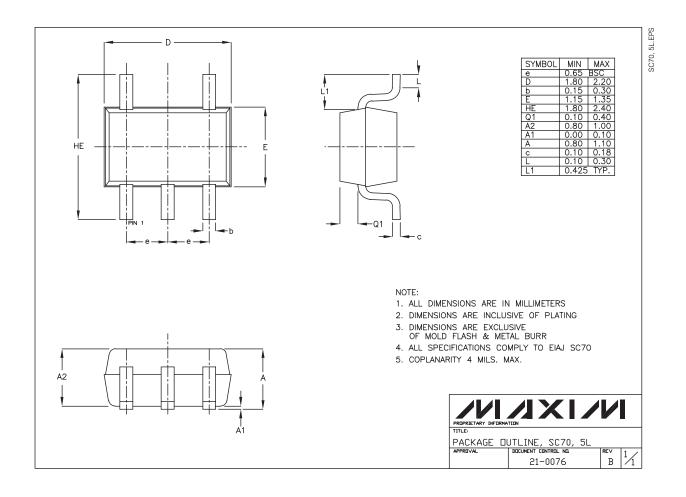



Figure 4. Channel Off/On-Capacitance

_Chip Information

TRANSISTOR COUNT: 135 PROCESS: CMOS

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2001 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.